
TWO-TIERED DOMAIN COMPOSITE ESTIMATION MODEL WITH
PROPOSED MOMENT-MATCHING ESTIMATORS

DARIUS LI

Bureau of Economic and Business Research
David Eccles School of Business

University of Utah

Abstract. The baseline method of composite shrinkage estimation of a small-area domain
involves borrowing sampling strength from a larger geography. Natural extensions to this
method could incorporate sampling strength from multiple domains. From an applied
perspective, survey data for neighboring small areas may be sparse. Thus, we propose a
two-tiered composite shrinkage estimation method that leverages sampling strength from
two areas—one large area for which disaggregated data is not available and another area
aggregated from smaller constituent districts with available survey data. The model also
allows for the geographic flexibility in which the portions of the two areas overlap. This
extension requires three moment-matching estimators to calculate the composite weights that
minimize the estimated expected mean-squared error of the two-tiered domain composite
estimator.

1. Proposed Two-Tiered Composite Estimation Model

Composite shrinkage estimators leverage sampling strength from large domains to improve the
reliability of small-area estimates. The baseline method involves the composite form of a small
area and a larger domain in which the former is situated within the latter [3]. We reviewed this
method and provided additional insights via a simulation study and preliminary applications
using the American Community Survey PUMS data [2]. This method can be extended to
incorporate neighboring small areas [4]. However, from a practical standpoint, survey estimates
for neighboring small areas may not be available on an annual basis. Furthermore, larger
areas for which survey data is consistently produced may not align with the geographic
boundaries of the small areas in question. Thus, we propose a practical extension to the
baseline shrinkage estimation method that involves the use of two larger geographies and
incorporates the flexibility of imperfect geographic alignment.
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For the sake of simplicity, we will refer to small areas as districts and the two larger geographies
as place and county. Despite this nomenclature, our proposed method could apply to other
geographic hierarchies as long as the place includes the small area in question. The model
does allow for the district to be outside the boundaries of the county. However, in practice,
the county might overlap parts of the place or exist in proximity to the district in order
to warrant the inclusion of the county in the model. Furthermore, place and county do not
necessarily have to be corresponding geographic levels classified in the census. The selected
“place” can be any geographical entity for which we have survey estimates for the district in
question as well as for the other districts that comprise the place. For instance, “place” could
be a collection of census tracts with available survey data. The county, on the other hand,
does not necessarily have disaggregated data. A prime example of a large domain without
data disaggregated to small geographic units would be the American Community Survey
Public Use Microdata Areas (PUMAs). Thus, the nomenclature of place and county in this
model is focused more on the availability of disaggregated district-level survey data rather
than geographical hierarchy or size.

The geographical hierarchy can be formulated in two ways. In the first case, the place and
county are successively larger geographies. More specifically, Dp ⊂ D, where Dp is the set of
districts within place and D is the set of districts within the county. We will show that the
two-tiered composite estimation model under the geographical construct of Dp ⊂ D yields
only marginal improvement over the baseline composite method. In the second case, Dp * D
allows for more flexibility in data applications, since the place boundaries do not have to be
fully encapsulated within the county. This geographical structure lends itself to substantially
improved efficiency over the baseline composite method even in cases such that the district
d ∈ Dp \ D

.
= Dp ∩ Dc.

This proposed two-tiered estimation model is perhaps most useful in cases of sparse data. For
instance, we might have survey estimates for only a few small areas, which we can aggregate
as a “place” for the purposes of the model. This sparsity of data could render the baseline
composite method less useful if the collective sample size from these few small areas is still
insufficient. Thus, this two-tiered model allows for the additional leveraging of the county
survey data without having any disaggregated data for all the constituent components that
comprise the county.

1.1. Composite Form. The proposed two-tiered domain composite estimation method is
of the following form:

θ̂Cd = (1− b)θ̂d + bθ̂Cp (1.1)

θ̂Cp = (1− k)θ̂p + kθ̂ (1.2)

where θ̂d is the district-level estimator, θ̂p is the place-level estimator, and θ̂ is the county-level

estimator. Thus, θ̂Cp is the composite estimator leveraging the sampling strength of the place

and county. The district is in turn estimated by the estimator θ̂Cd —a composite of θ̂d and θ̂Cp .
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This two-tiered model can degenerate to the baseline composite method. In the case of k = 1,
the model above is reduced to a baseline composite form between the district and county. In
the case of k = 0, the model degenerates to a composite between the district and place.

Our goal is to find the optimal weights b and k assigned to the place-county composite
estimator θ̂Cp and the county-level direct estimator θ̂. Optimality will be based on minimizing

the mean squared error of θ̂Cd with respect to the unknown district parameter θd as shown
below:

MSE
{
θ̂Cd (b, k); θd

}
= Var

{
(1− b)θ̂d + b(1− k)θ̂p + bkθ̂

}
+

{
E
[
(1− b)θ̂d + b(1− k)θ̂p + bkθ̂

]
− θd

}2 (1.3)

= (1− b)2vd + b2(1− k)2vp + b2k2v

+ 2b(1− b)(1− k)cd,p + 2(1− b)bkcd + 2b2k(1− k)cp

+ (−bθd + b(1− k)θp + bkθ)2
(1.4)

= (1− b)2vd + b2(1− k)2vp + b2k2v

+ 2b(1− b)(1− k)wdvd + 2b(1− b)kudvd
+ 2b2k(1− k)vp

∑
d∈Dp

ud + b2(−θd + (1− k)θp + kθ)2
(1.5)

where
vd = Var(θ̂d)

vp = Var(θ̂p)

v = Var(θ̂)

cd = Cov(θ̂d, θ̂)

cp = Cov(θ̂p, θ̂)

cd,p = Cov(θ̂d, θ̂p)

and ud and wd are the sampling weights of district d as a proportion of the county and place
sampling pool, respectively. The summation in (1.5) is over the set Dp, which represents
all the districts within place p. This summation is the sampling weight of all districts at
the intersection of the place and county as a share of the total county sample size. Since
disaggregated data may not be available for the county survey data, this sampling weight
may have to be estimated.

The simplification from (1.4) to (1.5) involves the standard assumption that the estimates θ̂d
are mutually independent for all d ∈ D, where D is the set representing all districts in the
county.

1.2. Optimal Weights. Since MSE
{
θ̂Cd (b, k); θd

}
is a function of both b and k, the optimal

two-tiered composite estimator θ̂Cd (b?, k?) is attained by minimizing MSE
{
θ̂Cd (b, k); θd

}
with

respect to both b and k. Hence, the solution to the following nonlinear system of equations
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resulting from taking the partial derivatives of MSE
{
θ̂Cd (b, k); θd

}
with respect to b and k

would lead to optimal weights:

∂ MSE{θ̂Cd (b,k);θd}
∂b

= −2(1− b)vd + 2b(1− k)2vp + 2bk2v

+ 2(1− 2b)(1− k)wdvd + 2(1− 2b)kudvd

+ 4bk(1− k)vp
∑
d∈Dp

ud + 2b
{
k(θ − θp) + (θp − θd)

}2
= 0

(1.6)

∂ MSE{θ̂Cd (b,k);θd}
∂k

= −2b2(1− k)vp + 2b2kv − 2b(1− b)wdvd + 2b(1− b)udvd
+ 2b2(1− 2k)vp

∑
d∈Dp

ud + 2b2
{
k(θ − θp)2 + (θ − θp)(θp − θd)

}
= 0

(1.7)

In the case that the place is a conglomerate of districts with no microdata to produce a place-
level sample variance vp, then the factor vp in (1.6) and (1.7) can be replaced with

∑
d∈Dp

wdvd.

One exception is that vp
∑
d∈Dp

ud in (1.6) and (1.7) should be replaced with
∑
d∈Dp

wdudvd. These

requirements retain the assumption that θ̂d are mutually independent for all d ∈ Dp.

The equations throughout this paper are applicable to both geographical cases of Dp ⊂ D
and Dp * D. The summation

∑
d∈Dp

ud could be tailored to
∑

d∈Dp∩D
ud for the case Dp * D.

However, this change is not necessary, since ud = 0 for all d /∈ Dp ∩ D.

Note that the terms (θ − θp)2, (θp − θd)2, and (θ − θp)(θp − θd) in (1.6) and (1.7) need to be
estimated, since they include the unknown district, place, and county parameters. Instead

of optimizing MSE
{
θ̂Cd (b, k); θd

}
, we have to resort to the minimization of the expected

mean squared error eMSE
{
θ̂Cd (b, k); θd

}
= EDp

[
MSE

{
θ̂Cd (b, k); θd

}]
. The resulting nonlinear

system of equations1 that solve for the optimal weights b† and k† for eMSE
{
θ̂Cd (b, k); θd

}
are

as follows:

1We used the nleqslv package in R to solve the nonlinear system of equations in (1.6) and (1.7) for the
optimal weights b? and k? as well as the estimated variant of the nonlinear system in (1.8) and (1.9) for the

suboptimal weights b̂† and k̂† [1].
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∂ eMSE{θ̂Cd (b,k);θd}
∂b

= −2(1− b)vd + 2b(1− k)2vp + 2bk2v

+ 2(1− 2b)(1− k)wdvd + 2(1− 2b)kudvd

+ 4bk(1− k)vp
∑
d∈Dp

ud + 2b
{
k2σ2

p + σ2
d,p + 2kρd,p

}
= 0

(1.8)

∂ eMSE{θ̂Cd (b,k);θd}
∂k

= −2b2(1− k)vp + 2b2kv − 2b(1− b)wdvd + 2b(1− b)udvd

+ 2b2(1− 2k)vp
∑
d∈Dp

ud + 2b2
{
kσ2

p + ρd,p

}
= 0

(1.9)

where

σ2
p = EDp

[
(θ − θp)2

]
σ2
d,p = EDp

[
(θp − θd)2

]
ρd,p = EDp

[
(θ − θp)(θp − θd)

]

The terms σ2
p, σ

2
d,p, and ρd,p still need to be estimated. To estimate these terms, we use the

method of moment matching, employed in a similar fashion as Longford’s baseline composite
shrinkage method [3]. The following estimators replace their corresponding terms in (1.8)

and (1.9) to minimize the estimated expected mean squared error êMSE
{
θ̂Cd (b, k); θd

}
and

obtain the suboptimal weights b̂† and k̂†. Please see Appendix A for the derivations of the
following proposed estimators:

σ̂2
p =

(
θ̂ −

∑
d∈Dp

wdθ̂d

)2

− v̂ + 2
∑
d∈Dp

wdĉd −
∑
d∈Dp

w2
dv̂d (1.10)

σ̂2
d,p =

∑
d∈Dp

wd

[
(θ̂p − θ̂d)2 − (v̂d − 2ĉd,p)

]
− v̂p (1.11)

ρ̂d,p =
∑
d∈Dp

wd

[
(θ̂ − θ̂p)(θ̂p − θ̂d)− (ĉp − ĉd + ĉd,p)

]
+ v̂p (1.12)

where

v̂d = V̂ar(θ̂d)

v̂p = V̂ar(θ̂p)

v̂ = V̂ar(θ̂)

ĉd = Ĉov(θ̂d, θ̂)

ĉp = Ĉov(θ̂p, θ̂)

ĉd,p = Ĉov(θ̂d, θ̂p)
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With the assumption that the estimates θ̂d are mutually independent for all d ∈ Dp, (1.10)–
(1.12) can be further simplified to

σ̂2
p =

(
θ̂ −

∑
d∈Dp

wdθ̂d

)2

− v̂ +
∑
d∈Dp

(2ud − wd)wdv̂d (1.13)

σ̂2
d,p =

∑
d∈Dp

wd

[
(θ̂p − θ̂d)2 − (1− 2wd)v̂d

]
− v̂p (1.14)

ρ̂d,p =
∑
d∈Dp

wd

[
(θ̂ − θ̂p)(θ̂p − θ̂d) + (ud − wd)v̂d

]
+

(
1−

∑
d∈Dp

ud

)
v̂p (1.15)

2. Simulation Study of Two-Tiered Estimation Method

In order to understand the robustness of the two-tiered domain composite shrinkage esti-
mator, we will conduct a simulation study to examine the dynamics of the estimator under
various conditions of district similarity and different sampling designs. While the simulation
cases cannot possibly be exhaustive, they are nonetheless illustrative for understanding the
conditions under which the applicability of this method is most useful.

2.1. Simulation Design. The simulated population for each case in the simulation study
is comprised of five districts (A, B, C, D, and E). Districts B and C are within Place X,
while Districts D and E belong to Place Y. District A is found in both places. We conduct a
second set of simulation cases in Section 2.7 to explore the effects of increasing geographic
overlap. In this first set of simulations, however, District A is the only overlapping district.
Furthermore, the constituent districts form the entirety of the geographical extent of the
corresponding places. In other words, there are no residual subdivisions within the places
that do fall outside the boundaries of a district. In the estimator distributions of simulation
cases (Figures 1–9), each district panel is labeled as Place, District (e.g., X,A). Note that
the results of Panels X,A and Y,A are distinct in the simulation cases, since the data and
sampling conditions are different, despite the overlap of District A in both places. In the
case of Panel X,A disaggregated data is available for all the districts in Place X, but Place
Y data is available only in aggregate form for calculating θ̂. Similarly, for Panel Y,A the
disaggregated Place Y data is used for calculating θ̂p, whereas Place X data is in aggregate

form for calculating θ̂.

Note that the nomenclature of place and county is relative. For Place X districts, the “place”
is Place X, whereas Place Y serves as the “county.” For Place Y districts, the “place” is Place
Y, whereas Place X serves as the “county.” While disaggregated data to the district level is
available for the purposes of the simulation study, the nonavailablity of this disaggregated
data is imposed for the corresponding county when conducting the simulations for each
district.
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2.2. Simulation Cases. For illustrative purposes, nine simulation cases are shown in this
section. The simulation cases are constructed from a combination of district similarity and
sampling designs.

The following are the district similarity cases:

• SS: district similarity of θd for both Places X and Y
• SD: district similarity within Place X and district dissimilarity within Place Y
• DD: systematic district dissimilarity for both Places X and Y

The systematic district dissimilarity in Case DD entails low and high values of θd for the
non-overlapping districts, while District A, which overlaps both Place X and Y, takes on an
intermediate value of θd.

Each similarity case above is paired with the following designs of simple random sampling
without replacement (srswor) for a total of nine simulation cases:

• a: 2.5% srswor for each district in Places X and Y
• b: 2.5% and 5% srswor for each district in Place X and Place Y, respectively
• c: 2.5% and 10% srswor for each district in Place X and Place Y, respectively

The nomenclature for the simulation cases is a combination of the district similarity and
sampling design cases. For instance, Case SDb represents the simulation in which Place X has
within-district similarity of θd with a 2.5% srswor design, whereas Place Y has within-district
dissimilarity with a 5% srswor design.

Figures 1–9 show the empirical distributions of θ̂d, θ̂
C
d (b?, k?), θ̂Cd (b̂†, k̂†), θ̂

C
d (b̂p, 0), and θ̂Cd (b̂c, 1)

resulting from 1,000 repeated samples of each simulation case. For consistency, the simulated
population sizes are 200 for each district with very similar underlying population standard
deviations σd. The varying sampling rates for Place Y in the simulation cases change the
sampling sizes of Districts A, D, and E accordingly.

The baseline estimators θ̂Cd (b̂p, 0) and θ̂Cd (b̂c, 1) are evaluated at the estimated suboptimal

weights b̂p and b̂c, which minimize the estimated expected mean-squared error of the composite

of θd with θp and θ, respectively. Thus, the performance of the two-tiered estimator θ̂Cd (b̂†, k̂†)

could be compared to the baseline estimators θ̂Cd (b̂p, 0) and θ̂Cd (b̂c, 1), given the evaluation of

θ̂Cd (b, k) at suboptimal weights using the appropriate moment-matching estimators. On the

other hand, the distribution of θ̂Cd (b?, k?) is displayed in Figures 1–9 as the optimal result of
the two-tiered method. The optimal two-tiered estimator cannot be attainable in applications
given the unknown parameters θd, θp, and θ. Since θ̂Cd (b?, k?) is evaluated at optimal weights,
this estimator should not be compared to the baseline estimators presented in Figures 1–9.
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2.3. Case SS. With district similarity across both Places X and Y, the empirical MSE
reductions in using composite estimators are generally sizeable. In Case SSa (Figure 1),

the two-tiered estimator θ̂Cd (b?, k?) yielded an additional 6 to 11 percent reduction in MSE

compared to the baseline estimators θ̂Cd (b̂p, 0) and an additional 20 to 25 percent reduction in

MSE compared to θ̂Cd (b̂c, 1). This sizable reduction in MSE beyond the baseline estimators
stems from the small sample sizes for each district. Given such a low sampling rate, the
collective sample sizes for the place and county alone provide less information than the joint
leveraging of both place and county as evidenced by the empirical MSEs in Table 1.

The advantage of the two-tiered estimators begins to slowly diminish with the increased
sampling rate applied to Place Y as shown in Case SSb (Figure 2) and Case SSc (Figure 3).

For instance, in Figure 3, the empirical distributions of θ̂Cd (b?, k?) and θ̂Cd (b̂c, 1) nearly converge
for Place X districts, because the large sample size of the “county” (Place Y) makes the use
of Place X survey data less relevant. Nonetheless, the use of the two-tiered estimator could
still yield additional reduction in MSE, albeit marginal.

Figure 1. Estimator Distributions for Case SSa
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Table 1. Empirical MSE of Estimators for Case SSa

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 3.0 8.2 6.0 10.6 1.92 6.9 9.4 0.65 6.6 9.8 1.02 6.5 9.9 1.09 6.3 10.1 1.32

A Y 5 3.0 8.2 6.1 10.5 1.73 6.9 9.3 0.56 6.6 9.7 0.87 6.5 9.8 0.98 6.3 10.0 1.17

B X 5 2.9 8.1 5.8 10.1 1.73 7.0 9.3 0.55 6.6 9.6 0.92 6.5 9.8 1.02 6.3 9.8 1.16

C X 5 3.0 8.5 6.4 10.7 1.77 7.2 9.4 0.53 6.9 10.0 0.93 6.8 10.2 1.05 6.8 10.3 1.16

D Y 5 3.2 8.2 5.9 10.4 1.95 7.0 9.4 0.60 6.7 9.8 0.99 6.5 9.9 1.10 6.4 10.0 1.23

E Y 5 3.1 8.1 5.9 10.4 1.86 7.0 9.3 0.48 6.5 9.7 0.92 6.4 9.7 1.03 6.3 9.8 1.16
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Figure 2. Estimator Distributions for Case SSb
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Table 2. Empirical MSE of Estimators for Case SSb

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 3.0 8.2 6.1 10.5 1.77 6.8 9.3 0.66 6.7 9.8 0.90 6.5 9.9 1.04 6.4 10.0 1.12

A Y 10 3.0 8.2 6.8 9.8 0.88 7.3 9.0 0.28 7.2 9.3 0.46 7.2 9.3 0.47 7.0 9.6 0.64

B X 5 2.9 8.1 6.0 10.3 1.68 7.1 9.1 0.53 6.6 9.7 0.88 6.6 9.9 1.00 6.5 9.9 1.01

C X 5 3.0 8.5 6.1 10.8 1.92 7.1 9.3 0.54 6.7 10.1 1.00 6.6 10.2 1.15 6.7 10.4 1.19

D Y 10 3.2 8.2 6.4 9.7 0.98 7.4 9.0 0.24 7.1 9.2 0.46 7.1 9.3 0.48 6.8 9.4 0.65

E Y 10 3.1 8.1 6.5 9.7 0.94 7.4 9.0 0.25 7.0 9.3 0.48 7.0 9.3 0.50 6.8 9.5 0.67

Figure 3. Estimator Distributions for Case SSc
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Table 3. Empirical MSE of Estimators for Case SSc

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 3.0 8.2 6.3 10.6 1.75 5.9 10.0 1.44 6.9 9.8 0.77 6.8 10.0 0.94 6.7 10.1 1.00

A Y 20 3.0 8.2 7.2 9.3 0.41 7.4 8.9 0.22 7.4 9.1 0.26 7.5 9.0 0.21 7.3 9.2 0.33

B X 5 2.9 8.1 5.9 10.2 1.71 6.7 9.2 0.78 6.6 9.6 0.85 6.5 9.8 1.00 6.4 9.8 0.96

C X 5 3.0 8.5 6.4 10.8 1.83 7.1 9.6 0.88 6.8 10.0 0.97 6.9 10.2 1.09 6.8 10.3 1.08

D Y 20 3.2 8.2 7.0 9.3 0.46 7.6 8.9 0.16 7.4 9.0 0.24 7.4 8.9 0.22 7.2 9.1 0.35

E Y 20 3.1 8.1 7.1 9.3 0.41 7.5 8.8 0.15 7.4 9.0 0.22 7.4 9.0 0.22 7.3 9.1 0.32
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2.4. Case SD. In Cases SDa, SDb, and SDc, the actual district parameters θd are similar
for Districts A, B, and C, whereas Place Y district parameters are dissimilar. Under this
condition, the two-tiered model generally does not perform better than the baseline composite
estimators for districts d /∈ Dp ∩ D. Even in Case SDc (Figure 6), Districts B and C do not
benefit from the additional leveraging of the county survey data with four times the sampling
rate of the districts in Place X. Thus, the dissimilarity of the underlying district parameters
in Place Y diminishes the utility of Place Y serving as the county for Place X districts.

On the other hand, District A (within Place Y) does exhibit some increased efficiency in using

θ̂Cd (b̂†, k̂†) rather than θ̂Cd (b̂c, 1) (Table 4). Unlike Districts B and C, District A is located at the
intersection of Places X and Y. Thus, the two-tiered model can potentially counterbalance the
dissimilarity within Place Y with both additional sampling strength, especially the additional
District A sample data within the Place Y survey data. Note that this subtle advantage is
diminished in Cases SDb and SDc in which the sampling rate of Place Y districts is increased
to the point such that the overabundance of District D and E sample data introduce excessive
dissimilarity and thus reduced efficiency in using the two-tiered estimator.

Despite the reduced efficiency of the two-tiered estimator under conditions of dissimilarity
in Place Y, the model produces empirical distributions that generally fall in between those
of the two baseline composite estimators. Thus, under certain conditions of dissimilarity,
the two-tiered could in fact yield additional efficiency as shown in Case DD (Figures 7–9).

Figure 4. Estimator Distributions for Case SDa
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Table 4. Empirical MSE of Estimators for Case SDa

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 2.8 8.8 6.8 10.9 1.55 7.8 10.0 0.48 7.1 10.3 0.97 7.1 10.3 0.98 7.1 10.7 1.23

A Y 5 2.8 8.8 6.7 10.9 1.58 7.5 10.0 0.59 7.3 10.6 1.06 7.3 10.8 1.26 7.0 10.6 1.15

B X 5 3.1 8.3 6.0 10.7 2.06 7.1 10.1 0.90 6.8 10.3 1.23 6.8 10.2 1.14 6.4 10.4 1.57

C X 5 3.0 8.2 6.1 10.5 1.72 7.0 10.0 0.89 6.7 10.1 1.12 6.7 9.9 0.96 6.5 10.3 1.47

D Y 5 3.0 9.9 7.6 11.8 1.73 8.1 11.1 0.87 8.0 11.3 1.11 8.2 11.4 0.98 7.8 11.5 1.44

E Y 5 3.0 10.4 8.3 12.7 1.80 8.3 11.7 1.33 8.4 11.9 1.44 8.5 11.9 1.25 8.4 12.3 1.66
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Figure 5. Estimator Distributions for Case SDb
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Table 5. Empirical MSE of Estimators for Case SDb

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 2.8 8.8 6.7 10.8 1.58 7.8 9.9 0.42 7.1 10.2 0.97 7.0 10.2 0.98 7.0 10.5 1.22

A Y 10 2.8 8.8 7.3 10.2 0.75 8.0 9.8 0.32 7.7 10.1 0.60 7.8 10.3 0.73 7.5 10.0 0.58

B X 5 3.1 8.3 6.0 10.5 1.88 7.2 10.0 0.79 6.8 10.3 1.19 6.8 10.0 1.07 6.5 10.3 1.51

C X 5 3.0 8.2 6.0 10.5 1.87 7.1 9.8 0.82 6.5 10.2 1.28 6.5 9.9 1.05 6.3 10.2 1.56

D Y 10 3.0 9.9 8.3 11.6 0.95 8.3 11.2 0.83 8.5 11.2 0.68 8.7 11.1 0.57 8.3 11.3 0.89

E Y 10 3.0 10.4 8.9 12.0 0.90 8.7 11.7 0.85 8.8 11.5 0.84 8.9 11.5 0.71 8.7 11.7 0.94

Figure 6. Estimator Distributions for Case SDc
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Table 6. Empirical MSE of Estimators for Case SDc

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 2.8 8.8 6.7 10.8 1.58 8.1 9.9 0.38 7.0 10.3 0.95 7.1 10.3 0.93 7.0 10.4 1.21

A Y 20 2.8 8.8 7.8 9.7 0.36 8.2 9.6 0.19 8.0 9.8 0.32 8.1 10.0 0.44 7.8 9.6 0.30

B X 5 3.1 8.3 6.0 10.6 1.88 7.4 10.0 0.73 6.8 10.4 1.22 6.8 10.1 1.02 6.5 10.3 1.50

C X 5 3.0 8.2 6.1 10.4 1.71 7.2 10.0 0.85 6.8 10.2 1.28 6.8 9.9 1.00 6.5 10.1 1.47

D Y 20 3.0 9.9 8.8 10.9 0.43 8.7 10.8 0.42 8.9 10.7 0.34 9.0 10.7 0.27 8.7 10.8 0.43

E Y 20 3.0 10.4 9.4 11.4 0.40 9.3 11.3 0.37 9.2 11.1 0.41 9.3 11.1 0.39 9.2 11.3 0.42
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2.5. Case DD. In this set of simulations, we created a systematic dissimilarity within Places
X and Y, whereby the former has lower values of θd and the latter has higher values of θd.
Furthermore, the overlapping District A has a value of θd in between the dissimilar parameters
of the non-overlapping districts. In practice, we could easily have districts with intermediate
values given their intersection between two larger areas. Thus, this set of simulations test the
efficiency of the two-tiered estimator under the condition that the underlying parameter is
distributed spatially.

District A yields increased efficiency with the two-tiered estimator in Case DDa with additional
MSE reductions of 20 percent for Panel X,A compared to the baseline composite estimator
θ̂Cd (b̂p, 0) (Figure 7). This additional improvement in efficiency is retained fairly consistently
for District A with the increasing sampling rate for Place Y as shown in Cases DDb and
DDc (Figures 8 and 9). While θ̂Cd (b̂†, k̂†) yields an empirical MSE slightly larger than that

of θ̂Cd (b̂p, 0) for Panel Y,A, the former is empirically less biased than the latter and thus
potentially more favorable.

In fact, Panels X,A and Y,A in Figures 7–9 show the utility of the two-tiered estimator in
curbing the incurred bias from the two baseline indicators. While the baseline composite
estimator θ̂Cd (b̂p, 0) is slightly downward biased with the low underlying parameters in Districts

B and C, θ̂Cd (b̂c, 1) is slightly upward biased given the high parameters assigned to Districts D
and E. Thus, the two-tiered estimator counterbalances the incurred bias from both baseline
composite estimators. For the non-overlapping districts, this effect diminishes, since the
underlying parameters for these districts belong to one of the two extremities.

Figure 7. Estimator Distributions for Case DDa
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Table 7. Empirical MSE of Estimators for Case DDa

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 3.1 8.1 5.9 10.2 1.78 7.0 9.3 0.49 6.1 9.5 1.24 5.9 9.4 1.54 6.2 9.9 1.29

A Y 5 3.1 8.1 5.9 10.6 2.00 6.8 9.1 0.51 6.4 10.4 1.41 6.4 10.2 1.39 6.0 10.2 1.69

B X 5 3.2 6.7 4.4 9.1 2.01 4.9 9.2 1.79 4.9 8.9 1.53 4.9 8.6 1.22 4.7 9.1 2.02

C X 5 3.0 6.2 4.0 8.5 1.83 4.5 8.6 1.54 4.6 8.4 1.59 4.9 8.2 1.24 4.4 8.6 1.85

D Y 5 3.1 9.0 6.7 11.2 1.92 6.8 10.6 1.34 7.0 10.6 1.39 7.2 10.7 1.19 6.7 10.8 1.85

E Y 5 3.2 9.8 7.4 12.1 2.07 7.3 11.6 1.85 7.4 11.5 1.87 7.6 11.4 1.51 7.3 11.8 2.20
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Figure 8. Estimator Distributions for Case DDb
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Table 8. Empirical MSE of Estimators for Case DDb

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 3.1 8.1 5.7 10.4 1.94 7.2 9.2 0.41 5.9 9.7 1.34 5.9 9.7 1.59 6.1 10.0 1.41

A Y 10 3.1 8.1 6.5 9.8 0.93 7.3 8.9 0.28 6.9 9.7 0.72 7.1 9.7 0.78 6.6 9.5 0.80

B X 5 3.2 6.7 4.4 8.9 1.77 4.9 8.9 1.54 4.9 8.8 1.51 4.8 8.5 1.14 4.7 9.0 1.94

C X 5 3.0 6.2 3.8 8.4 1.98 4.5 8.6 1.69 4.6 8.5 1.83 4.6 8.2 1.39 4.2 8.7 2.13

D Y 10 3.1 9.0 7.4 10.6 0.98 7.2 10.4 0.92 7.5 10.3 0.75 7.7 10.2 0.58 7.2 10.4 1.00

E Y 10 3.2 9.8 8.2 11.2 0.88 8.1 11.0 0.86 8.0 10.8 0.93 8.1 10.6 0.76 7.9 11.0 1.02

Figure 9. Estimator Distributions for Case DDc

θd = 8.1 θd = 6.7 θd = 6.2

θd = 8.1 θd = 9 θd = 9.8

X, A X, B X, C

Y, A Y, D Y, E

0.0

0.4

0.8

0.0

0.4

0.8

5 10 5 10 5 10

de
ns

ity

Estimator   θd   θd
C (b*,k*)   θd

C ( b+ , k+ )   θd
C ( bp , 0 )   θd

C ( bc , 1 )

Table 9. Empirical MSE of Estimators for Case DDc

θ̂d θ̂Cd (b?, k?) θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

nd σd θd P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A X 5 3.1 8.1 5.9 10.3 1.88 7.3 9.3 0.38 6.1 9.7 1.31 5.9 9.7 1.57 6.2 9.9 1.36

A Y 20 3.1 8.1 7.1 9.2 0.40 7.6 8.8 0.15 7.3 9.1 0.33 7.5 9.3 0.46 7.1 9.0 0.37

B X 5 3.2 6.7 4.5 9.1 2.03 5.0 9.1 1.70 4.9 9.1 1.71 5.0 8.5 1.19 4.7 9.1 2.13

C X 5 3.0 6.2 3.9 8.4 1.80 4.6 8.5 1.58 4.8 8.6 1.75 4.9 8.2 1.30 4.4 8.7 1.98

D Y 20 3.1 9.0 7.9 10.0 0.43 7.8 9.9 0.42 7.9 9.9 0.36 8.1 9.8 0.26 7.7 9.9 0.47

E Y 20 3.2 9.8 8.7 10.8 0.42 8.6 10.7 0.41 8.5 10.5 0.45 8.5 10.4 0.46 8.5 10.7 0.47
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(c) Case DDa
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(d) Case SSc
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(e) Case SDc
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Figure 10. MSE Surface Plots for Panel X,A Sample Instances

The surface plots above show the resulting MSEs for different combinations of the weights
b and k for sample instances of Panel X,A in six of the nine simulation cases. The large
and small points are the MSEs corresponding to the suboptimal and optimal estimators,
respectively. The dark and sky blue points are the MSEs for the optimal and suboptimal
two-tiered estimators. Notice that the boundary curves at k = 0 and k = 1 represent the

MSE curves for the baseline methods that leverage θ̂d with θ̂p and θ̂, respectively.

2.6. MSE Surface Plot of Sample Instances. Figure 10 shows the mean-squared error
surface plots of a sample instance of Panel X,A for each of the selected simulation cases (Cases
SS, SD, and DD under sampling designs a and c). The top panel (Figures 10a–10c) show
sample instances for Cases SSa, SDa, and DDa, while the bottom panel (Figures 10d–10f)
display sample instances for Cases SSc, SDc, and DDc.
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For each panel in Figure 10, the x- and y-axes are the weights b and k in the two-tiered
composite estimation model. While b represents the weight assigned to θ̂Cp (the composite of

θ̂p and θ̂), k allocates additional weight toward θ̂ and thus away from θ̂p.

The color scheme of the points on the MSE surface plots is consistent with that of the estimator
distributions of the simulation cases in Figures 1–9. The large and small orange points on the

surface plot boundary at k = 0 represent the actual mean-squared error MSE
{
θ̂Cd (b, 0); θd

}
evaluated at b?p and b̂p, which minimize MSE

{
θ̂Cd (b, 0); θd

}
and êMSE

{
θ̂Cd (b, 0); θd

}
, respec-

tively. Similarly, the large and small purple points on the boundary at k = 1 represent

the actual mean-squared error MSE
{
θ̂Cd (b, 1); θd

}
evaluated at b?c and b̂c, which minimize

MSE
{
θ̂Cd (b, 1); θd

}
and êMSE

{
θ̂Cd (b, 1); θd

}
. More simply put, these boundary points in-

dicate the actual mean-squared error evaluated at the optimal and estimated suboptimal
weights for the two baseline composite estimators. The actual mean-squared error is not
calculable in practice, but for the purposes of the simulation study, the underlying district,
place, and county parameters are available to make these calculations.

The effect of sampling design on the optimal weights for the estimator model is most visible
in Case SSa (Figures 10a). In this simulation case, each district in both places has a 2.5%

srswor design. This leads to large optimal weights b?p and b?c , weighing θ̂p or θ̂, respectively,
very heavily in calculating the baseline composite estimators. The two-tiered estimator yields
even further reductions in MSE by allocating less weight to θ̂d (manifested in the large value
of b?) than in the baseline estimators in order to incorporate survey data from both the place
and county as shown in Figure 10a. Similarly, the estimated suboptimal two-tiered estimator
θ̂Cd (b̂†, k̂†) yields a considerably lower MSE than its corresponding estimated suboptimal

baseline estimators θ̂Cd (b̂p, 0) and θ̂Cd (b̂c, 1).

On the other hand, with the sampling rate increased to 10% for Place Y districts in Case
SSc (Figure 10d), the further reductions in MSE using the two-tiered estimator becomes
marginal. As evidenced in Figure 10d, the MSE evaluated at the optimal weights for the
two-tiered estimator is only marginally lower than that of the baseline composite estimator
θ̂Cd (b?p, 1) leveraging θ̂d and θ̂. Since Panel X,A utilizes Place Y survey data to calculate the
county estimator, the baseline composite estimator leveraging sampling strength between
θ̂d and θ̂ could easily reduce MSE dramatically with across-district similarity and the high
sampling rate of Place Y in Case SSc. This means that the baseline estimator θ̂Cd (b?p, 1) has
fully incorporated the county survey data with its large sampling weight, rendering the further
leveraging of place survey data extraneous. Introducing Place X survey data in the two-tiered
estimator model does not yield enough new information for a large reduction in MSE beyond
that achieved using the baseline estimator leveraging θ̂d and θ̂.

On the other hand, with district dissimilarity within the county in Case SD, the baseline
estimator θ̂Cd (b?c , 1) becomes an unattractive composite estimator. While the other baseline

estimator θ̂Cd (b?p, 0) would be more appropriate given the homogeneity in Place X, the optimal
two-tiered estimator could potentially yield further reductions in MSE by leveraging the
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additional survey data for District A within the county as shown in Figure 10b. Despite this
additional reduction in MSE for the optimal two-tiered estimator, the additional error incurred
by the moment-matching estimators used to calculate the suboptimal two-tier estimator
θ̂Cd (b̂†, k̂†) reduces the efficiency obtained with the optimal two-tiered estimator considerably.
In Case SDc (Figure 10e), the optimal two-tiered estimator yields only marginal improvement,
since the large county sampling rate introduces excessive data for districts dissimilar to
District A. While District A is sampled at a larger rate within the county, the inability to
disaggregate this subset from the dissimilar districts reduces the benefit of a larger sampling
rate.

The panels for Cases DDa and DDc (Figures 10c and 10f) show that systematic dissimilarity
could potentially yield additional MSE reduction using the two-tiered estimator. In Case
DDa, the large MSE at the two corners intersecting b = 1 at k = 0 and k = 1 represent
the large error associated with weighing the place and county estimators too heavily given
district dissimilarity within both domains. While the MSE at the corner of b = 1 and k = 1
is lessened in Case DDc with the large county sampling rate, the MSE remains elevated in
the other corner of b = 1 and k = 0, since the place sampling design remains at 2.5% srswor.
Interestingly, in Case DDa, the optimal weight k? is about 0.57, meaning that θ̂p and θ̂ are

weighted similarly for the place-county estimator θ̂Cp . In Case DDc, the optimal weight k? in
the selected sample instance increases to 0.6, since the higher county sampling rate increases
the sampling strength of θ̂. However, the two-tiered estimator does not achieve a considerable
reduction in MSE in Case DDc, since the increased county sampling rate makes the baseline
estimator θ̂Cd (b?c , 1) a more suitable alternative.

2.7. Effect of Geographic Alignment. For all simulation cases presented in the previous
section, District A was the only district overlapping Place X and Place Y. We will now
examine the effect of geographic alignment on the performance of the two-tiered composite
estimator model by increasing the overlap between Places X and Y. As with the previous
set of simulations, Place X comprises of Districts A, B, and C, while Districts D and E are
within Place Y. Unlike in the first set of simulations, we will focus on Panel X,A. From the
perspective of Panel X,A, Place X is the place, while Place Y is the county. We will retain
this geographic classification for this set of simulations.

The following are three different cases of geographic overlap that we will examine:

• Case A: Dp ∩ D = {A}
• Case AB: Dp ∩ D = {A,B}
• Case ABC: Dp ⊂ D, where Dp = {A,B,C}

Each geographic alignment case is then paired with sampling designs a and c used in the
main simulation study. For simplicity, we will focus on the conditions of Case SS in simulating
the geographic alignment cases.

Figure 11 shows the empirical distributions of θ̂d, θ̂
C
d (b̂†, k̂†), θ̂

C
d (b̂p, 0) and θ̂Cd (b̂c, 1) for Panel

X,A in Cases A, AB, and ABC under both sampling designs a and c. Case A under sampling



Bureau of Economic and Business Research Page 17

design a shows the most visible reduction in MSE using the two-tiered estimator. The
empirical distribution of the two-tiered estimator slowly converges to that of the baseline
estimator θ̂Cd (b̂c, 1) with increasing geographic overlap as seen in the top three panels in
Figure 11. The increasing geographic overlap between Places X and Y reduces the utility of
leveraging Place X survey data as the place estimator, since Place Y encapsulates districts
that also belong to Place X.

The bottom panel in Figure 11 shows that the increasing county sampling rate compounds
the issue of increasing geographic alignment, causing a further reduction in the utility of the
two-tiered estimator. In fact, the empirical MSE for the two-tiered estimator θ̂Cd (b̂†, k̂†) is

slightly higher than that of the baseline estimator θ̂Cd (b̂c, 1). This reversal in the empirical
MSEs could be attributed to the tradeoff between the additional leveraging of estimators in
the two-tiered model and the incurred error from using three moment-matching estimators. In
other words, the increasing county sampling rate makes the composite form of θ̂d and θ̂ such
an efficient estimator that the cost of incurring additional error from three moment-matching
estimators outweighs the benefits of leveraging place survey data already encapsulated in the
county estimator.

This second simulation study demonstrates that geographic overlap and sampling designs
can play a role in determining the tradeoffs between using the two-tiered estimator and the
baseline composite estimators.

Figure 11. Estimator Distributions for Panel X,A in Case SS
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Table 10. Empirical MSE of Estimators for Panel X,A in Case SS

θ̂d θ̂Cd (b̂†, k̂†) θ̂Cd (b̂p, 0) θ̂Cd (b̂c, 1)

P5 P95 MSE P5 P95 MSE P5 P95 MSE P5 P95 MSE

A a 6.0 10.3 1.74 6.3 9.6 0.96 6.3 9.7 1.06 6.3 9.8 1.22

AB a 6.2 10.5 1.79 6.7 9.9 0.91 6.6 10.0 1.02 6.5 10.0 1.16

ABC a 6.1 10.1 1.55 6.6 9.5 0.79 6.5 9.6 0.89 6.5 9.7 0.93

A c 5.9 10.3 1.73 6.5 9.4 0.83 6.4 9.6 0.99 6.3 9.7 1.05

AB c 6.0 10.6 1.92 6.6 9.8 0.98 6.6 9.8 1.07 6.4 10.1 1.13

ABC c 6.0 10.2 1.72 6.2 9.6 1.04 6.3 9.6 0.96 6.2 9.7 0.95
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3. Conclusion

We extended Longford’s baseline composite estimation method with a two-tiered composite
estimation model consisting of place and county parameters. Given the added complexity
to the model, we proposed three moment-matching estimators required for minimizing the
estimated expected mean squared error of the two-tiered model with respect to the actual
district parameter.

The simulation studies show that the two-tiered model yields the most additional efficiency
under conditions of across-district similarity for both the place and county. Systematic
dissimilarity with the overlapping district taking on an intermediate value also leads to
increased efficiency with the two-tiered estimator, which counterbalances the incurred bias
of the two baseline composite estimators. For nearly all the simulation cases, increasing the
sampling rate reduces the utility of the two-tiered model, since one of the baseline composite
estimators could potentially capture most of the reduction in MSE. Even in such cases, the
empirical distributions of the two-tiered estimator often converges to those of the baseline
composite estimator with the largest empirical efficiency. In addition to increased county
sampling rates, increasing geographic overlap between the place and county diminishes the
utility of the two-tiered county, since the county survey data incorporates more information
about districts overlapping the place and county, rendering the additional leveraging of the
place survey data less relevant.

The proposed moment-matching estimator does lead to the additional requirement of disag-
gregated data for the districts within the place boundaries. However, the nonlinear system
used to solve the optimal weights in the model do not necessarily have this additional data
requirement if the moment-matching estimators were replaced with auxiliary data. Nonethe-
less, this composite estimation extension expands the data flexibility in applications, since
the place boundaries do not need to be completely encapsulated within those of the county.
With this increased flexibility, the two-tiered composite estimation model could more readily
combine various survey data with differing geographical specifications.
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Appendix A. Proposed Moment-Matching Estimators

In the baseline composite shrinkage estimation, Longford employed the method of moment
matching to estimate the between-area variance term [3]. We adopt this method in a similar
fashion to estimate the terms σ2

p, σ
2
d,p, and ρd,p in (1.8) and (1.9) with proposed moment-

matching estimators.

A.1. Estimating σ2
p. In order to estimate σ2

p = EDp

[
(θ − θp)2

]
, we will set a simple estimator

to a particular moment that will recover the term σ2
p. First, let

Sp = (θ̂ − θ̂p)2 =

θ̂ −∑
d∈Dp

wdθ̂d

2

(A.1)

Second, take the expectation of Sp:

E
[
Sp
]

= E
[
θ̂2
]
− 2

∑
d∈Dp

wd E
[
θ̂θ̂d

]
+ E

∑
d∈Dp

w2
dθ̂

2
d +

∑
i∈Dp

∑
j 6=i

wiwj θ̂iθ̂j

 (A.2)

= v − 2
∑
d∈Dp

wdcd +
∑
d∈Dp

w2
dvd +

∑
i∈Dp

∑
j 6=i

wiwj Cov
(
θ̂i, θ̂j

)
+ θ2 − 2

∑
d∈Dp

wdθθd +
∑
i∈Dp

∑
j 6=i

wiwjθiθj +
∑
d∈Dp

w2
dθ

2
d

(A.3)

= v − 2
∑
d∈Dp

wdcd +
∑
d∈Dp

w2
dvd +

(
θ −

∑
d∈Dp

wdθd

)2

(A.4)

Note that the between-district covariance term in (A.3) disappears from (A.4) with the

assumption that the estimates θ̂d are mutually independent for all d ∈ Dp.

Third, take the expectation of E
[
Sp
]

over Dp, the set of districts within the place boundaries.

EDp

{
E
[
Sp
]}

= v − 2
∑
d∈Dp

wdcd +
∑
d∈Dp

w2
dvd + EDp

(θ −∑
d∈Dp

wdθd

)2
 (A.5)

= v − 2
∑
d∈Dp

wdcd +
∑
d∈Dp

w2
dvd + σ2

p (A.6)
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Lastly, rather than setting the simple estimator S equal to E
[
Sp
]
, we will match S with

EDp

{
E
[
Sp
]}

in order to solve for σ̂2
p.

Sp = EDp

{
E
[
Sp
]}

Sp = v − 2
∑
d∈Dp

wdcd +
∑
d∈Dp

w2
dvd + σ2

p

σ̂2
p = Sp − v̂ + 2

∑
d∈Dp

wdĉd −
∑
d∈Dp

w2
dv̂d (A.7)

The result in (A.7) is equivalent to the estimator in (1.10).

A.2. Estimating σ2
d,p. To estimate σ2

d,p = EDp

[
(θp − θd)2

]
, we use a weighted sum of squares

Sd,p as a simple estimator for moment matching, shown below:

Sd,p =
∑
d∈Dp

wd(θ̂p − θ̂d)2 (A.8)

Then, we take the expectation of Sd,p:

E
[
Sd,p
]

=
∑
d∈Dp

wd
{
vp + vd − 2cd,p + (θp − θd)2

}
(A.9)

In preparation for moment matching, we take the expectation for E
[
Sd,p
]

over Dp:

EDp

{
E [S]

}
=
∑
d∈Dp

wd(vd + vp − 2cd,p) +
∑
d∈Dp

wdEDp

[
(θp − θd)2

]
(A.10)

=
∑
d∈Dp

wd(vd − 2cd,p) + vp + σ2
d,p (A.11)

By matching the simple estimator in (A.8) with (A.11),

σ̂2
d,p = Sd,p −

∑
d∈Dp

wd(v̂d − 2ĉd,p)− v̂p (A.12)

which is equivalent to the estimator in (1.11).
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A.3. Estimating ρd,p. To estimate ρd,p = EDp

[
(θ − θp)(θp − θd)

]
, we select the following

simple estimator for moment matching:

Rd,p =
∑
d∈Dp

wd(θ̂ − θ̂p)(θ̂p − θ̂d) (A.13)

We then take the expectation of the simple estimator Rd,p:

E
[
Rd,p

]
=
∑
d∈Dp

wd
{
cp − cd − vp + cd,p + (θ − θp)(θp − θd)

}
(A.14)

In order to recover the term ρd,p, we must then take the expectation of E
[
Rd,p

]
over Dp:

EDp

{
E
[
Rd,p

]}
=
∑
d∈Dp

wd(cp − cd + cd,p) +
∑
d∈Dp

wdEDp

[
(θ − θp)(θp − θd)

]
− vp (A.15)

=
∑
d∈Dp

wd(cp − cd + cd,p) + ρd,p − vp (A.16)

By matching the simple estimator Rd,p with the moment EDp

{
E
[
Rd,p

]}
and solving for ρd,p,

we obtain
ρ̂d,p = Rd,p −

∑
d∈Dp

wd(ĉp − ĉd + ĉd,p) + v̂p (A.17)

which is equivalent to the estimator in (1.12).

References

[1] Hasselman, B. nleqslv: Solve systems of non linear equations, 2014. R package version
2.1.1.

[2] Hogue, M., and Li, D. Composite Shrinkage Estimation: Review of Theory with
Simulation Study and Empirical Applications. Economic and Statistical Working Paper
Series. Bureau of Economic and Business Research, University of Utah, 2014.

[3] Longford, N. T. Missing Data and Small-Area Estimation: Modern Analytical Equip-
ment for the Survey Statistician. Springer, New York, 2005.

[4] Longford, N. T. Small area estimation with spatial similarity. Computational Statistics
and Data Analysis 54 (2010), 1151–1166.


